Win IT Exam with Last Dumps 2025


Google Professional-Machine-Learning Exam

Page 4/34
Viewing Questions 31 40 out of 339 Questions
11.76%

Question 31
You need to train a computer vision model that predicts the type of government ID present in a given image using a GPU-powered virtual machine on Compute
Engine. You use the following parameters:
- Optimizer: SGD
- Image shape = 224ֳ—224
- Batch size = 64
- Epochs = 10
- Verbose =2
During training you encounter the following error: ResourceExhaustedError: Out Of Memory (OOM) when allocating tensor. What should you do?




Question 32
You developed an ML model with AI Platform, and you want to move it to production. You serve a few thousand queries per second and are experiencing latency issues. Incoming requests are served by a load balancer that distributes them across multiple Kubeflow CPU-only pods running on Google Kubernetes Engine
(GKE). Your goal is to improve the serving latency without changing the underlying infrastructure. What should you do?




Question 33
You have a demand forecasting pipeline in production that uses Dataflow to preprocess raw data prior to model training and prediction. During preprocessing, you employ Z-score normalization on data stored in BigQuery and write it back to BigQuery. New training data is added every week. You want to make the process more efficient by minimizing computation time and manual intervention. What should you do?




Question 34
You need to design a customized deep neural network in Keras that will predict customer purchases based on their purchase history. You want to explore model performance using multiple model architectures, store training data, and be able to compare the evaluation metrics in the same dashboard. What should you do?




Question 35
You are developing a Kubeflow pipeline on Google Kubernetes Engine. The first step in the pipeline is to issue a query against BigQuery. You plan to use the results of that query as the input to the next step in your pipeline. You want to achieve this in the easiest way possible. What should you do?





Question 36
You are building a model to predict daily temperatures. You split the data randomly and then transformed the training and test datasets. Temperature data for model training is uploaded hourly. During testing, your model performed with 97% accuracy; however, after deploying to production, the model's accuracy dropped to 66%. How can you make your production model more accurate?




Question 37
You are developing models to classify customer support emails. You created models with TensorFlow Estimators using small datasets on your on-premises system, but you now need to train the models using large datasets to ensure high performance. You will port your models to Google Cloud and want to minimize code refactoring and infrastructure overhead for easier migration from on-prem to cloud. What should you do?




Question 38
You have trained a text classification model in TensorFlow using AI Platform. You want to use the trained model for batch predictions on text data stored in
BigQuery while minimizing computational overhead. What should you do?




Question 39
You work with a data engineering team that has developed a pipeline to clean your dataset and save it in a Cloud Storage bucket. You have created an ML model and want to use the data to refresh your model as soon as new data is available. As part of your CI/CD workflow, you want to automatically run a Kubeflow
Pipelines training job on Google Kubernetes Engine (GKE). How should you architect this workflow?




Question 40
You have a functioning end-to-end ML pipeline that involves tuning the hyperparameters of your ML model using AI Platform, and then using the best-tuned parameters for training. Hypertuning is taking longer than expected and is delaying the downstream processes. You want to speed up the tuning job without significantly compromising its effectiveness. Which actions should you take? (Choose two.)








Premium Version