You are designing an ML recommendation model for shoppers on your company's ecommerce website. You will use Recommendations AI to build, test, and deploy your system. How should you develop recommendations that increase revenue while following best practices?
Question 12
You are designing an architecture with a serverless ML system to enrich customer support tickets with informative metadata before they are routed to a support agent. You need a set of models to predict ticket priority, predict ticket resolution time, and perform sentiment analysis to help agents make strategic decisions when they process support requests. Tickets are not expected to have any domain-specific terms or jargon. The proposed architecture has the following flow: Which endpoints should the Enrichment Cloud Functions call?
Question 13
You have trained a deep neural network model on Google Cloud. The model has low loss on the training data, but is performing worse on the validation data. You want the model to be resilient to overfitting. Which strategy should you use when retraining the model?
Question 14
You built and manage a production system that is responsible for predicting sales numbers. Model accuracy is crucial, because the production model is required to keep up with market changes. Since being deployed to production, the model hasn't changed; however the accuracy of the model has steadily deteriorated. What issue is most likely causing the steady decline in model accuracy?
Question 15
You have been asked to develop an input pipeline for an ML training model that processes images from disparate sources at a low latency. You discover that your input data does not fit in memory. How should you create a dataset following Google-recommended best practices?
Question 16
You are an ML engineer at a large grocery retailer with stores in multiple regions. You have been asked to create an inventory prediction model. Your model's features include region, location, historical demand, and seasonal popularity. You want the algorithm to learn from new inventory data on a daily basis. Which algorithms should you use to build the model?
Question 17
You are building a real-time prediction engine that streams files which may contain Personally Identifiable Information (PII) to Google Cloud. You want to use the Cloud Data Loss Prevention (DLP) API to scan the files. How should you ensure that the PII is not accessible by unauthorized individuals?
Question 18
You work for a large hotel chain and have been asked to assist the marketing team in gathering predictions for a targeted marketing strategy. You need to make predictions about user lifetime value (LTV) over the next 20 days so that marketing can be adjusted accordingly. The customer dataset is in BigQuery, and you are preparing the tabular data for training with AutoML Tables. This data has a time signal that is spread across multiple columns. How should you ensure that AutoML fits the best model to your data?
Question 19
You have written unit tests for a Kubeflow Pipeline that require custom libraries. You want to automate the execution of unit tests with each new push to your development branch in Cloud Source Repositories. What should you do?
Question 20
You are training an LSTM-based model on AI Platform to summarize text using the following job submission script: gcloud ai-platform jobs submit training $JOB_NAME \ --package-path $TRAINER_PACKAGE_PATH \ --module-name $MAIN_TRAINER_MODULE \ --job-dir $JOB_DIR \ --region $REGION \ --scale-tier basic \ -- \ --epochs 20 \ --batch_size=32 \ --learning_rate=0.001 \ You want to ensure that training time is minimized without significantly compromising the accuracy of your model. What should you do?